This document applies to colonial cavity roosting bat species (all *Myotis*, *Perimyotis*, *Eptesicus*, *Corynorhinus*, *Nycticeius*, and *Tadarida* with emphasis on *Myotis*, *Perimyotis*, and *Eptesicus*).
Contents

Tables and Figures .. 3

I. Cooperators and Partners ... 1

II. Objective .. 2

III. Bat Species Affected that Occur in South Carolina ... 2

IV. Permit Requirements ... 4

V. WNS Prevention and Disease Surveillance .. 5
 A. Nuisance Wildlife Control Operators ... 5
 B. Wildlife Rehabilitators .. 5
 C. Scientific Research Permitees ... 6
 D. South Carolina Department of Natural Resources .. 6
 E. South Carolina Department of Health and Environmental Control .. 6

VI. Passive and Active Monitoring .. 7
 A. Pre-WNS Sites .. 7
 B. Post-WNS Sites ... 8

VII. Regulatory and Management Actions .. 8
 A. Regulations ... 8
 B. Management .. 9

VIII. Response to Bats with Potential WNS .. 12
 A. See Fig 2: Flowchart to Determine Response to Bats with Potential WNS 12
 B. Details for Scientific Research Permitees and SCDNR .. 12

IX. Outreach and Education .. 13
 A. NWCOs, Caving Groups and Other Cooperators .. 13
 B. General Public ... 13

X. Appendices .. 14
 A. USFWS Decontamination Protocol (September 13, 2018) ... 14
 B. Reichard Wing Damage Index (WDI) ... 23
 C. Nonlethal screening of bat-wing skin with the use of ultraviolet fluorescence................................. 34
 D. Protocol for Non-lethal Swab Sampling of Bat Skin for Detection of Pd... 44
 E. Instructions for Taking a Wing Tissue Biopsy .. 47
 F. Longwave ultraviolet (UVA) fluorescence screening of bat wings .. 50
 G. NWHC Instructions for collection of carcasses ... 52
 H. Southeastern Cooperative Wildlife Disease Study Necropsy Submission Form 55
Tables and Figures
Table 1: Conservation Status and Occurrence of WNS for South Carolina Bat Species 4

Figure 1: WNS Occurrence by County in South Carolina... 3
Figure 2: Flowchart to Determine Response to Bats with Potential WNS .. 11
I. Cooperators and Partners

The mission of monitoring, survey, regulation and research cannot be met by a single entity. The response to White-nose Syndrome (WNS) will require cooperation from government, non-governmental organizations and the private sector. The primary SC Department of Natural Resources contact is Jennifer Kindel (Kindelj@dnr.sc.gov, 864-419-0739). Cooperators and partners include:

State Agencies

- South Carolina Army National Guard, Fort Jackson - Stanley Rikard; McCrady Training Center - Layne Anderson, Bryan Hall, Chris Stone
- South Carolina Department of Health and Environmental Control - Christy Jeffcoat, Rachel Radcliffe, DVM
- South Carolina Department of Natural Resources - Jay Butfiloksi, Sam Chappelear, Will Dillman, Billy Dukes, Jennifer Kindel, Greg Lucas, Willie Simmons, Sam Stokes, Tom Swayingham
- South Carolina Department of Parks, Recreation and Tourism - Terry Hurley
- South Carolina Forestry Commission - Russell Hubright
- Southeastern Cooperative Wildlife Disease Study - Michelle Willis
- South Carolina Department of Transportation - Ann-Marie Altman

Federal Agencies

- United States Army Corps of Engineers - Sandra Campbell
- United States Forest Service, Southern Research Station - Susan Loeb; Francis Marion National Forest - Mark Danaher; Francis Marion National Forest, Sumter National Forest, and all ranger districts therein (Andrew Pickens, Enoree, Long Cane, and Francis Marion Ranger Districts) - Jeff Magniez
- United States Fish and Wildlife Service - Jennifer Koches, Morgan K. Wolf
- United States Geological Survey - Fort Collins Science Center: Laura Ellison

Universities

- Clemson University - David Jachowski, Greg Yarrow; Campbell Museum of Natural History – Melissa Fuentes
- Furman University - Travis Perry
- South Carolina Upstate - Jonathan Storm
- Anderson University - Rocky Nation

Non-governmental Organizations

- Bat Conservation International - Katie Gillies, Dan Taylor
- North Carolina Bat Working Group - Mary K Clark, Mary Frazier, Lisa Gatens
- Nuisance Wildlife Control Operators
- Palmetto Bluff Conservancy - Mary Socci
- Southeastern Bat Diversity Network - Trina Morris, Tim Carter
- The Nature Conservancy - Kristen Austin
II. Objective

To coordinate with cooperators and partners of the conservation community in creating and adhering to state and federal White-nose Syndrome Response Plan guidelines which address the prevention and spread of WNS in South Carolina.

III. Bat Species Affected that Occur in South Carolina

White-nose Syndrome is a disease characterized by the white fungus species *Pseudogymnoascus destructans* (*Pd*; previously known as *Geomyces destructans*) which forms on the noses and wing membranes of affected hibernating bats. Mortality rates attributed to WNS have reached up to 90 and 100% at hibernacula, causing the death of more than 5.7 million bats in North America since it was first documented in New York during the winter of 2006/2007. This disease has affected bat species already designated as high conservation concern, and WNS could be a major contributing factor of this classification for additional bat species.

WNS was first confirmed in South Carolina in Pickens County on a tri-colored bat (*Perimyotis subflavus*) during March of 2013. Since then, another case in Pickens county on an eastern small-footed myotis (*Myotis lebii*) and two other cases in Oconee and Richland counties on tri-colored bats have been reported in 2013 and 2014. The following counties have tested positive for *Pd* (on at least one bat): Cherokee, Greenville, Lancaster, Laurens, Spartanburg, Union and York. Because no clinical signs of WNS were seen on any of the bats observed, these counties are considered WNS suspect. If clinical signs are seen on bats in these counties in the future, those counties will be considered WNS positive (see Figure 1). While dark gray counties had *Pd* negative results, not all potential sites within those counties have been tested. Also, the lack of a positive *Pd* result does not definitively indicate the absence of the organism. The organism may not be detected if it is at very low abundance in the sample.

Among the bat species currently confirmed to be affected by WNS in other states, six of these occur in South Carolina. These species are all colonial cavity roosting bats, mainly from the *Myotis* genus (see Table 1). The fungus known to cause WNS has also been detected on additional bat species in other states, but they have not yet shown diagnostic signs of the disease. These species include colonial cavity and tree roosting bat species (*Corynorhinus* and *Tadarida* genus) and two bat species that generally roost in foliage (*Lasiurus* and *Lasionycteris* genus).

In the Upstate of South Carolina there have been incidental records of the Indiana Bat (*Myotis sodalis*), which is also a species confirmed to be affected by WNS, and the Big Free-tailed Bat (*Nyctinomops macrotis*). However, due to their rarity, we will not address these species here unless greater numbers are found in the state.
Figure 1: WNS Occurrence by County in South Carolina. While dark gray counties had Pd negative results, not all potential sites within those counties have been tested. Also, the lack of a positive Pd result does not definitively indicate the absence of the organism.

Current WNS positive counties in South Carolina include Oconee, Pickens and Richland. Current WNS suspect counties include Cherokee, Greenville, Lancaster, Laurens, Spartanburg, Union, and York.
Table 1: Conservation Status and Occurrence of WNS for South Carolina Bat Species

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Global Rank</th>
<th>State Rank</th>
<th>Protection*</th>
<th>Affected by WNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big Brown Bat</td>
<td>Eptesicus fuscus</td>
<td>G5</td>
<td>S5?</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Eastern Small-footed Bat*</td>
<td>Myotis leibii</td>
<td>G4</td>
<td>S1</td>
<td>ST</td>
<td>Yes</td>
</tr>
<tr>
<td>Little Brown Bat</td>
<td>Myotis lucifugus</td>
<td>G3</td>
<td>S1S2</td>
<td>S?</td>
<td>Yes</td>
</tr>
<tr>
<td>Northern Long-eared Bat</td>
<td>Myotis septentrionalis</td>
<td>G1G2</td>
<td>S1</td>
<td>FT, S?</td>
<td>Yes</td>
</tr>
<tr>
<td>Southeastern Bat</td>
<td>Myotis austroriparius</td>
<td>G4</td>
<td>S1S2</td>
<td>S?</td>
<td>Yes</td>
</tr>
<tr>
<td>Tricolored Bat*</td>
<td>Perimyotis subflavus</td>
<td>G2G3</td>
<td>S1S2</td>
<td>S?</td>
<td>Yes</td>
</tr>
<tr>
<td>Rafinesque's Big-eared Bat</td>
<td>Corynorhinus rafinesquii</td>
<td>G3G4</td>
<td>S2</td>
<td>SE</td>
<td>**</td>
</tr>
<tr>
<td>Silver-haired Bat</td>
<td>Lasionycteris noctivagans</td>
<td>G3G4</td>
<td>SNR</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>Eastern Red Bat</td>
<td>Lasiurus borealis</td>
<td>G3G4</td>
<td>S4S5</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>Brazilian Free-tailed Bat</td>
<td>Tadarida brasiliensis</td>
<td>G5</td>
<td>S4S5</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>Hoary Bat</td>
<td>Lasiurus cinereus</td>
<td>G3G4</td>
<td>SNR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern Yellow Bat</td>
<td>Lasiurus intermedius</td>
<td>G5</td>
<td>SNR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seminole Bat</td>
<td>Lasiurus seminolus</td>
<td>G5</td>
<td>S4?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evening Bat</td>
<td>Nycticeius humeralis</td>
<td>G5</td>
<td>S5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Species that have tested positive for WNS in South Carolina
* FT = Federally Threatened, SE = State Endangered, ST = State Threatened, S? = State Endangered or Threatened has been proposed
** The fungus that causes WNS has been detected on these species, but they have not yet shown diagnostic sign of the disease.

For an extensive summary of WNS and the threat to bat species:

For the most updated nationwide WNS information (this includes a new caver decontamination video):

https://www.whitenosesyndrome.org/

IV. Permit Requirements

Scientific Research Permittees and Wildlife Rehabilitators must adhere to permit requirements for state or federally listed bats, such as those listed as endangered, or threatened. State and federal authorization is required to collect and possess dead specimens, handle live bats, and/or to euthanize sick bats. Researchers/biologists conducting actions relating to capture, handling, attachment of radio transmitters, and tracking of northern long-eared bats will be required to obtain a federal scientific collection/recovery permit under Section 10(a)(1)(A) of the Endangered Species Act (ESA) and a state permit.

However, the ESA 4 (d) rule exempts Nuisance Wildlife Control Operators (NWCOs) from the requirement of a federal permit to handle federally threatened northern long-eared bats (*Myotis septentrionalis*).
V. WNS Prevention and Disease Surveillance

Any equipment that cannot be decontaminated according to USFWS decontamination protocols cannot be used in South Carolina if it has been used in WNS affected states for bat or cave or mine work, even though South Carolina is now considered a WNS affected state. This applies to everyone.

Sites within South Carolina: if any equipment that cannot be decontaminated according to USFWS decontamination protocols has been previously used in a South Carolina WNS affected site, it should not be used in a South Carolina WNS unaffected site.

A. Nuisance Wildlife Control Operators

South Carolina Department of Natural Resources (SCDNR) sends information and updates on WNS to all NWCOs listed for bats on its most recent NWCO list. Under current laws/regulations, SCDNR can only make the following recommendations to NWCOs:

1. All NWCOs are recommended to incorporate applicable elements of the United States Fish and Wildlife Service (USFWS) Decontamination Protocol for Bat Field Research and Monitoring (Appendix A), especially those companies which work in other states. Applicable elements would include practices such as only using exclusion devices that are amenable to decontamination in South Carolina if they were used in affected states.

3. NWCO personnel who handle individual bats during removal are urged to reference the Reichard Wing Damage Index (WDI) and report bat species to SCDNR scoring a 2 or greater (Appendix B). If possible, submitting a picture of these bats (especially with outstretched wings) to SCDNR is encouraged. The WDI is not a diagnostic tool.
 a. SCDNR staff may request dead bats for submission to Southeastern Cooperative Wildlife Disease Study (SCWDS) in 2018 and 2019. In this case, see guidelines for collection of dead bats in section VII. B. 5., and submission to SCWDS in section VII. B. 6. a. Otherwise, please follow steps for safe disposal of any dead bats in section VII. B. 6. C.

B. Wildlife Rehabilitators

Wildlife rehabilitators that currently rehabilitate or transport any bats are discouraged from doing so. If persons insist on rehabilitation efforts, the following procedures are recommended:

1. Use the USFWS Decontamination Protocol (Appendix A) and isolate all colonial bats.

2. Follow the Bat Rehabilitation Guidelines developed by USFWS and adapted for South Carolina as posted on the SCDNR WNS website: http://www.dnr.sc.gov/wildlife/publications/pdf/batrehabguidelines092011.pdf. Known bat or rabies vector rehabilitators will be contacted directly with the guidelines created (but not endorsed or discouraged) by the USFWS.
3. We recommend referencing the Reichard Wing Damage Index (WDI) and reporting bat species to SCDNR scoring a 2 or greater (Appendix B). If possible, submitting a picture of these bats (especially with outstretched wings) to SCDNR is encouraged. The WDI is not a diagnostic tool.
 a. SCDNR staff may request dead bats for submission to Southeastern Cooperative Wildlife Disease Study (SCWDS) in 2018 and 2019. In this case, see guidelines for collection of dead bats in section VII. B. 5., and submission to SCWDS in section VII. B. 6. a. Otherwise, please follow steps for safe disposal of any dead bats in section VII. B. 6. c.

C. Scientific Research Permittees

All Scientific Research permittees who work on bats in South Carolina must follow the guidelines of the USFWS Decontamination Protocol (Appendix A) to retain their SCDNR Scientific Research Permit. Additionally, they must score all bats with the Reichard Wing Damage Index (WDI) (Appendix B). WDI is not a diagnostic tool and it is not an effective indicator of WNS, especially in warmer months.

1. Document any handled bats scoring a 2 or higher on the WDI to SCDNR and/or USFWS. Data and material to be collected should include:
 a. Photographing the wing damage and submitting to SCDNR/USFWS (include date, location, animal identification number and species).
 b. Taking tissue from live animals (see Appendix D), if requested from SCDNR or USFWS for submission to SCWDS. No requests are in place currently.

2. For dead bats, first see section VII. B. 5. for collection of bat carcasses.
 a. Submit dead bats from unusual die-offs not easily attributed to other obvious causes such as poisoning or entrapment to SCWDS via SCDNR, or to the National Wildlife Health Center (NWHC) and notify SCDNR (see VII. B. 5. a. for SCWDS submissions).
 b. For all other dead bats not suspected of WNS, send fresh bats and/or bats with intact skull to museum (section VII. B. 5. b.) or safely dispose of bat (section VII. B. 5. c.).

3. Report all bats captured along with WDI score and location to the Bat Population Database (BPD) (http://my.usgs.gov/bpd). Each record can be entered into the online form, or a standardized capture spreadsheet can be used and uploaded to the BPD. If you do not already have an account to sign into the USGS website and/or would like a standardized spreadsheet, please contact the USGS.

D. South Carolina Department of Natural Resources

SCDNR biologists shall collect bats from abnormal die-offs (5+ bats) from unknown causes in 2018 and 2019 and submit to SCWDS.

E. South Carolina Department of Health and Environmental Control

South Carolina Department of Health and Environmental Control (SCDHEC) routinely receives bats from across the state for rabies testing. SCDHEC staff are requested to assess WDI score on bats if they don’t save them for submission to SCWDS. Bats that are not positive for rabies should be refrigerated or frozen for SCDNR and submitted to SCWDS. SCDHEC will notify SCDNR if...
any bats with visible fungus are received during winter months.

VI. Passive and Active Monitoring

A. Pre-WNS Sites

1. Conduct acoustic baseline surveys (others may be added)
 a. Acoustic statewide surveys through NABat initiated in 2015 and will continue into 2020. A minimum of 30 routes and/or stationary sites will be run two times each summer. [DONE]
 b. Continue survey route in Andrew Pickens Ranger District of Sumter National Forest (started in 2009) run by the Southern Research Station.
 d. Conduct Lake Jocassee and Keowee shoreline point counts at selected sites by Duke Energy contractor. [DONE]
 e. Continue survey route at Long Cane Ranger District.

2. Continue and/or increase netting or sampling at known maternity sites, particularly those along our northern border.
 a. Use telemetry to locate hibernacula of known little brown bat (Myotis lucifugus) maternity colonies. [This study was attempted in the fall of 2011/2012, but efforts to relocate bats after they left maternity site were unsuccessful].

3. Continue and/or increase infrared (IR) video photography monitoring of known roosts to detect dramatic declines in bat populations.

4. Continue and/or increase winter surveys, which will require careful decontamination of gear as per protocols.
 a. Follow guidelines detailed in section V.C.
 b. Full counts and follow-up counts at Stumphouse Tunnel (a WNS positive site). [ONGOING]
 c. New mine surveys and initial counts at sites without a vertical component (i.e. no rope work). Private mines: SCDNR has mapped over 200 known or potential locations (part of a State Wildlife Grant project) and most lack bat habitat. Unfortunately, most of the reported mines or prospects in the piedmont region were no longer extant or never had adits or shafts, and therefore provided no underground bat roosts. Of 58 mine sites surveyed in that project, only sixteen had an underground component with low numbers of tri-colored bats (Perimyotis subflavus) or other bats present. Most of the gold mine adits have some human entry (not always with landowner permission). [ONGOING]
 d. Entrance counts at Santee State Park when partners are available.
 e. Better temperature data could be gathered for suitability to Pd in the two best caves known by SCDNR which are on SCPRT land.
B. Post-WNS Sites

1. Minimize nonessential research or educational programs without research value that involve handling of bats, but continue acoustic surveys of same route(s) for rough population trends.

2. Monitor cave/mine roosts to evaluate survivorship, using methods that minimize stress on roosting bats, on a rotation of three to five years or more.

3. Cooperate with other states and researchers in gathering samples or monitoring information as requested.

4. Evaluate and consider various proposed treatment options as they develop, if necessary.

5. South Carolina Bat Blitz. [2015: DONE] During this intensive bat survey (a program of the Southeastern Bat Diversity Network), some nets, poles, ropes, and other survey items will be provided and decontamination materials will be on hand. All participants of the SC Bat Blitz should adhere to the guidelines presented in the USFWS Decontamination Protocol (Appendix A):

 a. Participants should not use any equipment that hasn’t been, or cannot be, properly decontaminated if it was used for surveys in a state with suspect or confirmed WNS.

 b. Even if it has been properly decontaminated, participants returning to a state without suspect or confirmed WNS should not use any gear used at the SC Bat Blitz in that state.

 c. Unless it has been properly decontaminated, participants returning to a state with suspect or confirmed WNS should not use gear used at the SC Bat Blitz in that state. However, participants should check with their applicable state or federal regulator agency to determine whether properly decontaminated gear may be used in their state.

 d. All netting team leaders are responsible for adhering to WNS decontamination protocols, and will be required to have a state permit for research through the office of Will Dillman, Assistant Chief of Wildlife – Statewide Programs, Research, and Monitoring (Phone: 803-734-3938, Email: DillmanJ@dnr.sc.gov).

VII. Regulatory and Management Actions

A. Regulations

1. South Carolina Department of Parks, Recreation and Tourism (SCPRT) prohibits recreational caving and staff entry to caves on their parks. No permits for caving are issued.

2. Recreational caving and rock climbing is not permitted on SCDNR owned lands or Wildlife Management Areas (WMA) year round. SCDNR does not have regulatory authority over privately owned lands or non-WMA state owned lands.

3. The USFS has issued an emergency order banning public entry or use of caves and mines, recently extended until 2019. Notify SCDNR Law Enforcement. [DONE]

4. The USFWS Decontamination Protocol for Bat Field Research/Monitoring (Appendix A) must be used by all bat researchers to retain their SCDNR Scientific Research Permit.

5. SCDNR to provide signage, “Entry Prohibited,” for a major southeastern bat (Myotis austroriparius) cave system. [DONE]
B. Management

1. Equip or supply field offices with appropriate decontamination and disposal protocol and supplies.

2. For WNS affected caves/mines, consider posting a sign outside the entrance identifying it as such [ONGOING].

3. SCDNR response to public calls:
 a. Determine if there is potential rabies exposure. Contact caller and obtain their contact information if there was potential for the caller to be exposed to rabies. If so, instruct the caller to contact DHEC state headquarters or their local DHEC office:
 i. DHEC State Headquarters Phone: 803-896-0640; DHEC contacts by county of occurrence: [URL]
 ii. Rabies Guide to Managing Exposure: [URL]
 b. Create a dead bat report for all calls regarding dead or dying bats and/or enter these reports into a spreadsheet. Fields should include date, number of bats, county, and phone number and address of person reporting dead bats.
 c. For response to bats with signs of WNS, see Flowchart to Determine Response to Bats with Potential WNS.

4. Collection of dead bats:
 a. Double check the bat is dead from a safe distance by using a tool such as a shovel. If closer observation is necessary, use leather gloves or a similar protective barrier that can be washed in hot water greater than 131°F for 20 minutes.
 b. When picking a maximum of 5 to 6 total bats, choose the freshest bats and try to choose bats of different species or age classes.
 c. Open two Ziploc bags, and use latex gloves on both hands. Pick up dead bat(s) with gloved non-writing hand. Don’t touch equipment or anything else with this now contaminated glove.
 d. Taking care not to contaminate the outside of the bag, use the uncontaminated glove to pick up one bag and place the bats in the bag. With the uncontaminated glove, close the bag and use a sharpie to write your name, date, location, county, and species (if known) on the bag. Continuing to use the uncontaminated glove, place this bag inside the other Ziploc bag and close it securely.
 e. Take off contaminated glove with uncontaminated glove and place both in a trash receptacle. Thoroughly wash your hands with antibacterial hand sanitizer that is at least 60% alcohol (e.g., Purell®) before picking up the Ziploc bag.
 f. Using a disinfectant such as bleach, peroxide wipes, or 70% alcohol wipes, clean the outside of the bag. For the general public - bring bat to local DNR office; if not possible, see 6. c. below for safe disposal instructions.
 g. Thoroughly wash any clothing and/or gear that come in contact with the bat in water held at 131°F for 20 minutes. Though complete decontamination may not be possible on carpeting or furniture, scrubbing and washing with hot water and antibacterial soap such as Dawn® antibacterial dish soap may help. Test a small area first to ensure there are no adverse effects.
5. What to do with dead bats:
 a. **SCWDS submission**: Keep specimen(s) on freezer pack or refrigerated, and ship within 24-36 hours. If shipping timeframe is not possible, place the bag in freezer until the next shipping opportunity. Fill out SCWDS form (Appendix H) and email to SCWDS. Be sure to CC form and email any photos to Jennifer Kindel (KindelJ@dnr.sc.gov). Ship bats overnight to SCWDS (Monday-Thursday), only after receiving confirmation from the lab.

 b. **Museum specimen** (if WNS isn’t suspected): Freeze bat specimen(s) and submit with date, location, county, and species (if known) to the Campbell Museum of Natural History at Clemson University. Fresh bats specimens are preferred, however partially decomposed bats, especially those with an intact skull, will be accepted. Museum curator: Melissa Fuentes, Email: fuente2@clemson.edu; Phone: 864-656-2328.

 c. **Safe disposal**: Dispose of bat(s) in bags with your garbage. An alternative to this is to bury only the bat carcass at least a foot deep so as not to be excavated by animals.
Figure 2: Flowchart to Determine Response to Bats with Potential WNS

Always adhere to permit requirements for state or federally listed bats.

*WNS positive (+) counties: Oconee, Pickens, Richland
*WNS suspect counties: treat as WNS negative (-) for flowchart

What is your affiliation?

Scientific Research Permitee or SCDNR

What time of year is it?

Aug - Oct

Don’t submit bats for testing

For dead bats, see section VII. B. 5. AND

May - July

WNS + or - County?*

Yes

See section VIII. B. 1. b. AND

No

See section VIII. B. 2. AND

For dead bats, see section VII. B. 5. AND

Report bats with WDI ≥ 2 (Appendix B) along with photo, date, location & species to SCNDPR

For dead bats, see section VII. B. 5. AND

Wildlife Rehabilitator or Wildlife Control Operator

General Public

Is carcass fresh or skull intact?

Yes

See section VII. B. 5. b. for museum specimen

No

See section VII. B. 5. c. for safe disposal

Did SCDNR request bat submission to SCWDS?

Yes

See section VII. B. 5. a. for SCWDS submission

No
VIII. Response to Bats with Potential WNS

A. See Fig 2: Flowchart to Determine Response to Bats with Potential WNS

B. Details for Scientific Research Permitees and SCDNR

Assess extent and distribution of WNS throughout cave or mine before collecting samples. Conduct a full count of infected and non-infected bats and record bat behavior if deemed unusual.

1. Bats encountered with field signs of WNS during Winter/Spring - November through April

a. If field signs of WNS are observed in areas of South Carolina where WNS has not been documented (new county):

 iii. A total count of all bats at colony/site and conduct WNS swab testing if possible.

 iv. Collect 3-5 freshly dead bats representative of the affected species.

 1) For species known to be affected by WNS (Table 1): if dead bats are not available for collection and WNS is suspected or the fungus is visible, use non-lethal sampling (Appendix D). Use of a UV light will greatly assist in wing biopsies for WNS testing (Appendix C) and is recommended.

 2) For species not known to be affected by WNS (Table 1): if dead bats are not available for collection and WNS is suspected or the fungus is visible, follow accepted guidelines to humanely euthanize one of each non-federally listed species that has obvious visible fungal growth (see Guidelines of the American Society of Mammalogists for the use of wild mammals in research by Sikes et al. 2011 in the Journal of Mammalogy 92(1): 235-253). Take non-lethal samples if it is a federally listed species and you have authorization to do so (Appendix D). Using a UV light will greatly assist in wing biopsies for WNS testing (Appendix C) and is recommended.

 3) For all other dead bats, use safe disposal guidelines in section VII. B. 5. c.

b. If field signs of WNS are observed in areas of South Carolina where WNS is already confirmed:

 1) A total count of all bats at colony/site during routine winter count cycles (3-5 years).

 2) Species known to be affected by WNS should be left undisturbed.

 3) Collect all dead bats for species of unknown susceptibility to WNS (Table 1). If dead bats are not available for collection and WNS is suspected or the fungus is visible, follow accepted guidelines to humanely euthanize one of each non-federally listed species that has obvious visible fungal growth (see Guidelines of the American Society of Mammalogists for the use of wild mammals in research by Sikes et al. 2011 in the Journal of Mammalogy 92(1): 235-253). Take non-lethal samples if it is a federally listed species and you have authorization to do so (Appendix D). Using a UV light will greatly assist in wing biopsies for WNS testing (Appendix C) and is recommended.

 4) For all other dead bats, safely dispose of them using guidelines in section VII. B. 5. c.
2. Bats encountered with field signs of WNS during Fall - August through October
 a. Investigate reports of unusual numbers of sick or dead bats (usually 5 or more) by surveying for
 increased adult and/or pup mortalities at maternity colonies. Determine which fresh, intact
 carcasses are representative of the affected species, and send 3-5 of those to SCWDS.
 b. If a species has evidence of severe wing damage (WDI ≥ 2) and is of unknown WNS
 susceptibility, take photos of wing damage.

IX. Outreach and Education

A. NWCOs, Caving Groups and Other Cooperators
 1. SCDNR shall send links and hard copies of WNS information from USFWS, such as the
 decontamination protocol and the WNS fact sheet, to all NWCOs. [ONGOING]
 2. SCDNR shall send updates on WNS to all NWCOs that are listed for bats on the most recent NWCO
 list. [ONGOING]
 3. Set up workshop for SCDNR staff and Cooperators [DONE- see archived webinar at
 https://connect.clemson.edu/p64123383/]
 4. Work with caving clubs such as the South Carolina Interstate Grotto to assist with WNS education
 and outreach. [ONGOING]

B. General Public
 1. Create an informational SCDNR webpage [DONE 2010 – see
 http://www.dnr.sc.gov/wildlife/batswns.html]
 2. Coordinate Press Releases with Greg Lucas, SCDNR, to educate the public and update elected
 officials. [ONGOING]
 3. Inform public to report unusual die-offs to their regional wildlife biologists for WNS testing.
 4. Create a WNS list serve.
 5. Create a bat watch program where the public counts bats exiting known roosts to measure population
 declines [DONE 2018 – Halloween emergence count at Sunrift Adventures is in its third year in
 2018; statewide citizen science Bat Watch program began in 2018, see
 http://www.dnr.sc.gov/wildlife/bats/batwatch.html]

Evaluate and Follow USFWS Guidelines for Containment

X. Appendices

A. USFWS Decontamination Protocol (September 13, 2018)

https://s3.amazonaws.com/org.whitenosesyndrome.assets/prod/7a93cc80-b785-11e8-87bb-317452edc988-
National_WNS_Decon_UPDATE_09132018.pdf
I. INTRODUCTION

The fungus *Pseudogymnoascus destructans* (*Pd* – formerly identified as *Geomyces destructans*) is the cause of white-nose syndrome (WNS), a disease that has resulted in unprecedented mortality of hibernating bats throughout eastern North America. Since first documented in New York in 2006, WNS continues to threaten hibernating populations of bats across the continent, having spread rapidly through the Northeast, mid-Atlantic, Midwest, and Southeast states, as well as eastern Canada.

Best available science indicates that *Pd* arrived in North America from a foreign source. Once *Pd* has been detected, either on bats or in the hibernaculum environments, the county of occurrence is considered contaminated indefinitely due to the long-term persistence of the fungus. Because of the devastating effects of WNS in North America, recommendations detailed in this document were developed to minimize the risk of human-assisted transmission. All persons who come into contact with bats, their environments, and/or associated materials for any reason (*e.g.*, research, recreation, etc.) are advised to take precautions to avoid additional, inadvertent transport of *Pd* to uncontaminated bats or habitats.

Observations of live or dead bats (multiple individuals at a single location) should be reported to local USFWS Field Office or State agency wildlife office http://www.whitenosesyndrome.org/partners. Do not handle bats unless you are properly trained, vaccinated, and, where necessary, authorized in writing to do so by the appropriate government agency.

II. PURPOSE:

The purpose of this document is to provide recommendations based on the best available scientific information known to effectively clean and treat (herein referred to as decontaminate, or similar derivation thereof) clothing, footwear, and/or gear (herein collectively referred to as equipment) that may have been exposed to *Pd*. When activities involve contact with bats, their environments, and/or associated materials the following decontamination procedures are designed to reduce the risk of human-assisted transmission of the fungus to other bats and/or habitats.

For the protection of bats and their habitats: 1) comply with all current cave and mine closures, advisories, and regulations on federal, state, tribal, and private lands; 2) follow relevant recommendations found in this document; and 3) do not transport any equipment into or out of the United States of America (USA) that has been in contact with bats or their environments.

Local, state, federal, or other management agencies may have additional requirements or clarifications for equipment used on lands under their jurisdictions or work involving public trust resources. Always follow all state and/or federal permit conditions. Contact the respective agency representatives for supplemental documents or additional information.

III. PRODUCT USE:

Ensuring the safety of individuals using any of the applications and/or products identified in this document must be the first priority. Safety data sheets (SDS) for chemicals and user’s manuals for equipment developed by product manufacturers provide critical information on the physical properties, reactivity, potential health hazards, storage, disposal, and appropriate first aid procedures for handling, application, and disposing of each
product in a safe manner. Familiarization with the SDS for chemical products, and manufacturer’s product care and use standards, will help to ensure appropriate use of these materials and safeguard human health. Read product labels in advance of intended field use. Ensure availability of adequate emergency eye-wash supplies or facilities at intended site of use. Always store cleaning products out of the reach of children or pets. **It is a violation of federal law to use, store, or dispose of a regulated product in any manner not prescribed on the approved product label and associated SDS.** Products, or their contaminated rinse water, must be managed and disposed of in accordance with local environmental requirements and, where applicable, product label, to avoid contamination of groundwater, drinking water, or non-municipal water features such as streams, rivers, lakes, or other bodies of water. Follow all local, state and federal laws. Requirements for product disposal may vary by state. Note: Quaternary ammonium wastewaters should not be drained through septic systems because of the potential for system upset and subsequent leakage into groundwater.

IV. TRIP PLANNING/ORGANIZATION:

1.) Identify the appropriate WNS Management Area (Figure 1) in which the equipment has been used and will be used in the future. Users of new or site-dedicated equipment (that has been and will be used in only one site) may skip to #3.

![Figure 1. WNS Management Areas by state. Endemic states are those where Pd is determined or assumed present in all hibernacula. Intermediate states are those where Pd is determined or assumed present in some but not all hibernacula in the state. States adjacent to states with confirmed WNS are also included in the Intermediate category. At Risk states are those that have at least one state between them and the nearest confirmed case of WNS.](image)

2.) Once the appropriate Management Areas have been determined using Figure 1, use Figure 2 to determine appropriate uses for A. Subterranean Equipment or B. Terrestrial Equipment. "**Subterranean equipment**" includes any equipment that has ever been exposed to a cave/mine environment. “**Terrestrial equipment**” includes any equipment that has not previously been exposed to a cave/mine environment. Regardless of the equipment designation, equipment should only be reused at similarly classified or progressively more contaminated locations².
As a precaution, subterranean and terrestrial equipment should not be transferred between the USA and other countries. Furthermore, long distance movement of equipment within any of the management areas should be avoided. Within the Intermediate management area, gear should not be moved from places known to be contaminated with Pd to places of unknown status.

3.) Contact local state/federal regulatory or land management agencies for additional requirements, exemptions, or addendums on lands under its jurisdiction that supplement guidance provided in Figure 2A and 2B.

4.) Choose equipment that can be most effectively decontaminated [e.g., rubber or synthetic rather than leather boots], otherwise commit use of equipment to a specific location (herein referred to as equipment dedication). Equipment should always be inspected for defects prior to use. Replace all defective or degraded equipment with new equipment. Brand new equipment can be used at any location where access is permitted, as long as it has not been stored or come in contact with contaminated equipment.

5.) Prepare a strategy (i.e., Outline how/where all equipment and waste materials will be contained, stored, treated and/or discarded after returning to the vehicle/base area) that allows daily decontamination of equipment and, where applicable, between individual sites visited on the same day, unless otherwise directed by local state/federal or land management agency instructions. Confirmed Pd contaminated sites or those with a high index of suspicion for contamination should be visited only after those sites of unknown Pd/WNS status² have been visited, to further reduce the risk of inadvertent transmission.
After cleaning and decontamination, the following symbols indicate that equipment transfer/movement is:

Not recommended

At the discretion of the responsible state/federal land management agency

Acceptable

A. **Subterranean** Equipment recommendations by WNS Management Area and **COUNTY**

B. **Terrestrial** Equipment recommendations by WNS Management Area and **STATE**

Figure 2. Movement recommendations for decontaminated (A) Subterranean and (B) Terrestrial equipment.
V. PROCEDURES FOR DECONTAMINATION:

1.) On site:
 a.) Thoroughly remove sediment/dirt from equipment immediately upon exiting from the site.
 b.) Contain all exposed and potentially contaminated equipment in sealed bags/containers for treatment away from the location. Decontaminate the outside hard, non-porous surfaces of containers and bags prior to moving them to a secondary location (e.g., vehicles, labs, or storage). Store all exposed and decontaminated equipment separately from unexposed equipment.
 c.) Clean hands, forearms, and exposed skin using hand/body soaps/shampoos and, when feasible, change into clean clothing and footwear prior to entering a vehicle.

2.) Off site:
 a.) REMOVE dirt and debris from the outside of vehicles (especially wheels/undercarriage) prior to additional site visits, especially when traversing WNS Management areas or scenarios categorized as “Not Recommended” (Figure 2).
 b.) CLEAN submersible and non-submersible equipment according to manufacturer’s specifications. Sediments and debris significantly reduce the effectiveness of treatments. Laboratory trials demonstrate that the use of conventional cleansers like Woolite® detergent or Dawn® dish soap aided in the removal of sediments and debris prior to treatment, contributing to the effectiveness of decontamination.
 c.) TREAT submersible or non-submersible equipment only in a safe manner according to the equipment and product labels using the most appropriate application or product listed in Table 1. For equipment that cannot safely be treated in accordance with both the manufacturer’s recommendations and product labeled instructions, dedicate to individual sites as determined appropriate in Section IV.
 i. Submersible Equipment (i.e., equipment that can safely withstand submersion in water or other specified product for the recommended amount of time without compromising the integrity of the item):

 Treatment of submersible equipment must be done in accordance with manufacturer’s recommendations for your equipment. The preferred treatment for all submersible equipment is submersion in hot water that maintains a temperature of at least 55°C (131°F) for a minimum of 20 minutes. Ensure that all equipment surfaces remain in direct contact (i.e., avoid all trapped air) with the hot water treatment for the duration of the treatment period. Consider that although many commercial and home washing machines with sanitize (or allergen) cycles may be capable of submerging gear in the recommended hot water application for the required time, it is incumbent on the user to be sure that machines to be used attain and sustain the needed temperatures throughout the process. If heat may affect the safety and/or integrity of the otherwise submersible equipment, consider equipment dedication or other products listed in Table 1. When considering other products found in Table 1, recognize that the applicability and effect of such products on the safety and integrity of equipment remains untested. Be aware the use of preferred applications and products in Table 1 should be done with extreme caution and proper personal protective gear due to the risk of personal injury.
 ii. Non-submersible Equipment (i.e., equipment that may be damaged by liquid submersion):

 Treat all non-submersible equipment using the most appropriate application or product in Table 1 that complies with the equipment manufacturer’s recommendations and product label instructions, where applicable. The listed applications or products may not be appropriate or safe for non-submersible equipment. Dedication of equipment should always be considered the preferred application in these circumstances.
d.) RINSE equipment, as appropriate, thoroughly in clean water, particularly items that may contact humans, bats, or sensitive environments. Allow all equipment to completely dry prior to the next use.

e.) DECONTAMINATE the equipment bins, sinks, countertops and other laboratory, office, or home areas with the most appropriate applications or products in Table 1.

Table 1. Applications and products with demonstrated efficacy against Pd 3, 4, 5, 6, & 7. Remember to consult equipment labels, registered product labels, and the appropriate SDS for regulations on safe and acceptable use.

<table>
<thead>
<tr>
<th>Tested Applications & Products 3, 4, 5, 6, & 7</th>
<th>Federal Reg No.:</th>
<th>Laboratory Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferred Applications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment Dedication</td>
<td>N/A</td>
<td>Clean according to manufacturer standards and dedicated to a site</td>
</tr>
<tr>
<td>Submersion in Hot Water 4, 6, & 7</td>
<td>N/A</td>
<td>Laboratory effectiveness demonstrated upon submersion in water with sustained temperature (\geq 55) (^\circ) C (131(^\circ) F) for 20 minutes.</td>
</tr>
<tr>
<td>Other Products</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethanol (60% or greater) 4, 6, & 7</td>
<td>CAS - 64-17-5</td>
<td>Laboratory effectiveness demonstrated upon exposure in solution for at least 1 minute.</td>
</tr>
<tr>
<td>Isopropanol (60% or greater) 4, 6, & 7</td>
<td>CAS - 67-63-0</td>
<td>Laboratory effectiveness demonstrated immediately following contact and associated drying time.</td>
</tr>
<tr>
<td>Isopropyl Alcohol Wipes (70%) 4, 6, & 7</td>
<td>CAS - 67-63-0</td>
<td>Laboratory effectiveness demonstrated immediately following contact and associated drying time.</td>
</tr>
<tr>
<td>Hydrogen Peroxide Wipes (3%) 4, 6, & 7</td>
<td>CAS - 7722-84-1</td>
<td>Laboratory effectiveness demonstrated when used in accordance with product label.</td>
</tr>
<tr>
<td>Rescue® (Formerly Accel®) 4, 5, 6, & 7</td>
<td>EPA - 74559-4</td>
<td>Laboratory effectiveness demonstrated when used in accordance with product label.</td>
</tr>
<tr>
<td>Clorox® Bleach 3, 4, 5, 6, & 7</td>
<td>EPA - 5813-100</td>
<td>Laboratory effectiveness demonstrated when used in accordance with product label.</td>
</tr>
<tr>
<td>Clorox® Wipes 4, 5, 6, & 7</td>
<td>EPA - 5813-79</td>
<td>Laboratory effectiveness demonstrated when used in accordance with product label.</td>
</tr>
<tr>
<td>Clorox® Clean-Up Cleaner + Bleach 4, 5, 6, & 7</td>
<td>EPA - 5813-21</td>
<td>Laboratory effectiveness demonstrated when used in accordance with product label.</td>
</tr>
<tr>
<td>Lysol® IC Quaternary Disinfectant Cleaner 3, 4, 5, 6, & 7</td>
<td>EPA - 47371-129</td>
<td>Laboratory effectiveness demonstrated when used in accordance with product label.</td>
</tr>
</tbody>
</table>

Other effective treatments with similar water based applications or chemical formulas (e.g., a minimum of 0.3% quaternary ammonium compound) may exist but remain untested at this time. Find more information on the EPA or FDA registered product labels by accessing the individual hyperlink or searching EPA or FDA Registration Numbers at: http://iaspub.epa.gov/apex/pesticides/f?p=PPLS:1 or http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm.

Products with USEPA registration numbers mitigate persistence of living organisms on surfaces and are regulated by the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA, 7 USC 136, et seq.). FIFRA provides for federal regulation of pesticide distribution, sale, and use. Within FIFRA, pesticides are defined as any substance or mixture of substances intended for preventing, destroying, repelling, or mitigating any pest. FIFRA further defines pests as any insect, rodent, nematode, fungus, weed, or any other form of terrestrial or aquatic plant or animal life or virus, bacteria, or other micro-organism (except viruses, bacteria, or other
micro-organisms on or in living man or other living animals) which the Administrator declares to be a pest under section 25(c)(1). Find more information on FIFRA at: http://www.epa.gov/oecaagct/lfra.html.

VI. EQUIPMENT AND ACTIVITY SPECIFIC RECOMMENDATIONS:

It is the responsibility of the users of this protocol to read and follow the product label and SDS. The product label is the law!

A. Clothing & Footwear:

IMPORTANT: All clothing (i.e., inner and outer layers) and footwear should be decontaminated after every site visit using the most appropriate Application/Product in Table 1 or otherwise cleaned and dedicated for use at individual sites or areas as determined appropriate in Section IV. Use of a disposable suit (e.g., Tyvek® or ProShield®) or site-dedicated, reusable suit (i.e., coveralls) is an appropriate strategy to minimize sediment/soil accumulation on clothing during a cave/mine or bat research activity. As stated earlier, all clothing layers should still be decontaminated or otherwise cleaned and dedicated after every use.

Disposable items, regardless of condition, should not be reused. Contain all used equipment in plastic bags upon final exit from a site, separating disposable materials from reusable equipment. Seal and store plastic bags in plastic containers until trash can be properly discarded, and/or exposed reusable equipment can be properly decontaminated off site. **B. Cave/Mine and other Subterranean Equipment:**

Dedicate, as necessary, or decontaminate all cave/mine equipment (e.g., backpacks, helmets, harness, lights, ropes, etc.) using the most appropriate guidance in Section V. Most types of equipment, including but not limited to, technical and safety equipment, have not undergone manufacturers’ consented testing for safety and integrity after decontamination. Therefore carefully review and adhere to the manufacturer’s care and use standards to maintain equipment functionality and safety protective features. If the application/product options in Table 1 are not approved by the manufacturer’s care and use standards for the respective type of equipment, clean and inspect equipment according to manufacturer’s specification and dedicate to similarly classified caves/mines/bat roosts and only reuse in progressively more contaminated caves/mines/bat roosts. **C. Scientific Equipment:**

Always consider the use of disposable scientific equipment and materials between individual bats. All disposable scientific equipment (e.g., work surfaces, bags/containers/envelopes, exam gloves, etc.) should only be used on one bat, then discarded after use. Re-useable equipment (e.g., cotton bags, plastic containers, etc.) must be decontaminated between individual bats using the most appropriate application or product in Table 1. In all cases, use breathable bags (e.g., paper, cotton, mesh, etc.). At the completion of daily activities and when allowable by equipment and product labels, equipment may be autoclaved before reuse; otherwise use the guidance in Section V to determine the relevant procedure for decontamination of all work surface area(s) and equipment (e.g., light boxes, banding pliers, holding bags, rulers, calipers, scale, scissors, wing biopsy punches, weighing containers, etc.). **D. Mist-Nets & Harp Traps:**

Dedicate, as necessary, or decontaminate all netting and harp trapping equipment (e.g., netting, tie ropes, poles, stakes, trap bags, lines, trap frame and feet, etc.) using the most appropriate guidance in Section V for the particular equipment. This is only necessary after each night of use when the net or trap equipment come in contact with one or more bats OR enter a cave/mine/bat roost. Consider the use of disposable harp trap bags or liners to reduce transmission risks throughout each trapping effort. Disposable harp trap bags should be discarded at the end of each night. **E. Acoustic Monitor, Camera, and Related Electronic Equipment:**
Dedicate, as necessary, or decontaminate all acoustic monitoring, camera, and related electronic equipment (e.g., detector, camera, tablets, cell phones, laptops, carrying case, lenses, microphone(s), mounting devices, cables, etc.) using the most appropriate guidance in Section V for the particular equipment. The material composition of this equipment requires careful review and adherence to the manufacturer’s care and use standards to maintain their functionality and protective features. If application/product options in Table 1 are not approved by the manufacturer’s care and use standards for the respective type of equipment, clean equipment accordingly and dedicate to similarly classified caves/mines/bat roosts or only reuse in progressively more contaminated caves/mines/bat roost.

Electronic devices used as terrestrial equipment, independent of bat handling work, pose a limited risk of transmission (i.e., driving transects or fixed point detector surveys not associated with a cave/mine/bat roost entrance).

Equipment used in a cave/mine/bat roost may be placed in a sealed plastic casing, plastic bag, or plastic wrap to reduce the potential for contact/exposure with contaminated environments. Prior to opening or removing any plastic protective wrap, first clean, then remove, and discard all protective wrap. This technique has not been tested and could result in damage to, or the improper operation of, equipment.

These recommendations are the product of the multi-agency WNS Decontamination Team, a sub-group of the Disease Management Working Group established by the National WNS Plan (A National Plan for Assisting States, Federal Agencies, and Tribes in Managing White-Nose Syndrome in Bats, finalized May 2011). On 15 March 2012 a national decontamination protocol was approved and adopted by the WNS Executive Committee, a body consisting of representatives from Federal, State, and Tribal agencies which oversees the implementation of the National WNS Plan. The protocol will be updated as necessary to include the most current information and guidance available.

1 To find published addenda and/or supplemental information, visit http://www.whitenosesyndrome.org/topics/decontamination.
2 Visit http://www.whitenosesyndrome.org/resources/map for the most updated information on the status of county and state. County and state level determination is made after a laboratory examination and subsequent classification of bats according to the current WNS case definitions. Definitions for the classification can be found at http://www.nwhc.usgs.gov/disease_information/white-nose_syndrome/Case%20Definitions%20for%20WNS.pdf. Contaminated determination includes both confirmed and suspect WNS classifications.
4 Efficacy of these agents and treatments are subject to ongoing investigation by the Northern Research Station, USDA Forest Service Cooperative Agreement 13-IA11242310-036 (U.S. National Park Service and U.S. Forest Service) & 16IA11242316017 (U.S. Fish and Wildlife Service and U.S. Forest Service). Information contained in this protocol from work associated with either agreement will continue to be revised, as necessary, pending results of these investigations.
5 The use of trade, firm, or corporation names in this protocol is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by state and/or federal agencies of any product or service to the exclusion of others identified in the protocol that may also be suitable for the specified use.
6 Product guidelines should be consulted for compatibility of use with one another before using any decontamination product. Also, detergents and quaternary ammonium compounds (i.e., Lysol® IC Quaternary Disinfectant Cleaner) should not be mixed directly with bleach as this will inactivate the bleach and in some cases produce a toxic chlorine gas. All materials may present unknown hazards and should be used with caution. Although certain hazards are described herein, we cannot guarantee that these are the only hazards that exist.
7 Final determination of suitability for any decontaminant is the sole responsibility of the user. All users should read and follow all labeled instructions for the products/applications and/or understand associated risks prior to their use. Treatments and the corresponding procedures may cause irreversible harm, injury, or death to humans, bats, equipment or the environment when used improperly. Always use personal protective equipment in well-ventilated spaces to reduce exposure to these products or applications.
B. Reichard Wing Damage Index (WDI)

Protocol:

http://www.fws.gov/northeast/PDF/Reichard_Scarring%20index%20bat%20wings.pdf

Published paper:

Wing-Damage Index Used for Characterizing Wing Condition of Bats Affected by White-nose Syndrome

Jonathan D. Reichard
Center for Ecology and Conservation Biology
Department of Biology
Boston University
Boston, MA 02215

White-nose Syndrome (WNS) is characterized by the growth of one or more species of fungus on the rostrum, ears, and flight membranes of hibernating bats. During the warm months of the year, damage to these membranes may be manifested by the appearance of necrotic tissue, tears, and scars in these membranes. To assess the occurrence and severity of damage to flight membranes, researchers authorized to handle bats should inspect the membranes of both wings and the uropatagium for each bat handled. Each bat is assigned a single score based on the collective condition of these membranes as described below. Affected membrane areas are estimated as the percent of the total membrane area (including both wings and the uropatagium). Translumination of membranes helps to reveal damage that is not otherwise visible. Damage also has been observed on the forearms of some bats and has been included in these scoring criteria. A general diagram of bat anatomy is included in Appendix A for reference.

The damage to membranes and the forearms are scored 0 (none) to 3 (high) according to the criteria listed below and digital photographs are taken to document any damage. Each photograph should include a reference scale and the bat ID number (specimen number if collected dead or band or ID number if alive and released). Place the animal on its back on a flat surface with wings and leg extended. Record images of both wings and the uropatagium either simultaneously or individually. This is best accomplished if one person grasps the tips of the wings and spreads them fully, while a second person extends the bat’s legs and uropatagium with one hand and takes the photo with the other. Alternatively, each wing and the uropatagium can be photographed separately, making sure that each photo includes the reference scale and ID number. You may need to experiment with camera settings to achieve quality images; we have had success recording images of flight membranes using a Canon PowerShot A95 (5 MP) digital camera against a white background using the Macro setting, a low intensity, built-in flash, F7.0, shutter speed = 1/800. These settings highlight some of the splotching and all of the necrosis and holes described below. If possible, translumination may highlight more scarring, but this may be difficult in the field. For translumination, we have used a modified Plano Stowaway tackle box insert (translucent white plastic box) with an LED headlamp inside (see Appendix B). If digital images cannot be recorded, sketches of damaged wings will be helpful.

Scoring Criteria:
Each bat is assigned the score for which it exhibits one or a combination of the characteristics designated to that score. Some minor physical damage may be normal. See notes on physical damage not associated with necrosis at the end of this document.
Score = 0
No damage. Fewer than 5 small scar spots are present on the membranes. The membranes are fully intact and pigmentation is normal.
Score = 1 Light damage. Less than 50% of flight membrane is depigmented (splotching), which is often visible only with translumination. The membranes are entirely intact. Some discoloration or flaking is visible on forearms. Such flaking on the forearm may exist even if the patagium appears unaffected.

Note: no splotching visible with only front lighting.

Translumination reveals the splotchy flight membrane.
Forearms may have flaking skin or discolored areas.
Score = 2 Moderate damage. Greater than 50% of wing membrane covered with scar tissue (splotching). Scarring is visible without translumination. Membrane exhibits some necrotic tissue and possibly few small holes (<0.5 cm diameter). Forearm skin may be flaking and discolored along the majority of the forearm, but this condition alone does not earn this score level.

Small holes are surrounded by discolored tissue. Necrotic tissue is sometimes associated with less severe splotching.
Score = 3 Heavy damage. Deteriorated wing membrane and necrotic tissue. Isolated holes >0.5 cm are present in membranes. Necrotic or receding plagiopatagium and/or chiropatagium are evident. This score is characterized by notable loss of membrane area and abundant necrosis.

Flight membranes show damage similar to level 2 damage with additional loss of flight membrane area due to holes and/or receding edges of the wings.
Plagiopatagium loss may be severe.
Physical Damage

We have encountered bats that have obvious physical damage to wings, but no associated splotching or necrotic tissue. These conditions are important to document as well. We suggest these be recorded in concordance with the above scores followed by a postscript “P” for “physical damage.” For example, an animal which has no noticeable splotching or flaking, but does have a tear in the wing membrane would be scored “0-P.” An animal that has moderate splotching and a tear or puncture would be scored “2-P.” Along with these scores, a description of the physical damage should be included on the data sheet.

Example: Score = 1-P due to light splotching (not shown in photo) and a physical tear in the membrane. Description: Right plagiopatagium appears to have torn from trailing edge of the membrane to about 1 cm proximal to the elbow.
Appendix A: Reference for flight membranes and digits of bats. Image adapted from J. S. Altenbach’s photograph of Myotis thysanodes.
Appendix B: We are working with an inexpensive light box in the field. The following model is an early effort to create an inexpensive, transportable light box for transluminating wings. The Plano Stowaway tacklebox insert (~$3.00) is a good size and the headlamp in this model may be replaced with small LED keychain lights (~$3.00 each).

The 23 cm x 12 cm tackle box insert is cut to fit the light of a headlamp, creating a diffuse light source.

In this model, images are a bit underexposed, but splotching is highlighted nicely. Brighter lights or more LEDs may solve this problem and a tripod would allow for slower shutter speed. This image was taken using F2.8, shutter speed = 1/30.
C. Nonlethal screening of bat-wing skin with the use of ultraviolet fluorescence to detect lesions indicative of white-nose syndrome.

This document can be found at:

NONLETHAL SCREENING OF BAT-WING SKIN WITH THE USE OF ULTRAVIOLET FLUORESCENCE TO DETECT LESIONS INDICATIVE OF WHITE-NOSE SYNDROME

Gregory G. Turner,1 Carol Uphoff Meteyer,2,11,12 Hazel Barton,3 John F. Gumbs,4 DeeAnn M. Reeder,5 Barrie Overton,6 Hana Bandouchova,7 Tomás Bartoń 8,9 Natália Martíková,9,10 Jiri Pikula,7 Jan Zukal,8 and David S. Blehert2

1 Pennsylvania Game Commission, 2001 Elmerton Avenue, Harrisburg, Pennsylvania 17710, USA
2 US Geological Survey, National Wildlife Health Center, 6006 Schroeder Road, Madison, Wisconsin 53711, USA
3 Department of Biology, University of Akron, 185 East Mill Street, Akron, Ohio 44325, USA
4 BATS Research Center, 107 Meadow View Court, Shohola, Pennsylvania 18458, USA
5 Department of Biology, Bucknell University, 1 Dent Drive, Lewisburg, Pennsylvania 17756, USA
6 Department of Biology, Lock Haven University, 301 West Church Street, Lock Haven, Pennsylvania 17745, USA
7 Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1/3, 612 42 Brno, Czech Republic
8 Department of Botany and Zoology, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
9 Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Kveˇtna´ 8, 603 65 Brno, Czech Republic 10 Institute of Biostatistics and Analyses, Masaryk University, Kamenice 3, 625 00 Brno, Czech Republic
11 Current address: US Geological Survey National Center, Environmental Health, 12201 Sunrise Valley Drive, Reston, Virginia 20192, USA
12 Corresponding author (email: cmeteyer@usgs.gov)

ABSTRACT: Definitive diagnosis of the bat disease white-nose syndrome (WNS) requires histologic analysis to identify the cutaneous erosions caused by the fungal pathogen Pseudogymnoascus [formerly Geomyces] destructans (Pd). Gross visual inspection does not distinguish bats with or without WNS, and no nonlethal, on-site, preliminary screening methods are available for WNS in bats. We demonstrate that long-wave ultraviolet (UV) light (wavelength 366–385 nm) elicits a distinct orange–yellow fluorescence in bat-wing membranes (skin) that corresponds directly with the fungal cupping erosions in histologic sections of skin that are the current gold standard for diagnosis of WNS. Between March 2009 and April 2012, wing membranes from 168 North American bat carcasses submitted to the US Geological Survey National Wildlife Health Center were examined with the use of both UV light and histology. Comparison of these techniques showed that 98.8% of the bats with foci of orange–yellow wing fluorescence (n=580) were WNS-positive based on histologic diagnosis; bat wings that did not fluoresce under UV light (n=588) were all histologically negative for WNS lesions. Punch biopsy samples as small as 3 mm taken from areas of wing with UV fluorescence were effective for identifying lesions diagnostic for WNS by histopathology. In a nonlethal biopsy-based study of 62 bats sampled (4-mm diameter) in hibernacula of the Czech Republic during 2012, 95.5% of fluorescent (n=522) and 100% of non-fluorescent (n=540) wing samples were confirmed by histopathology to be WNS positive and negative, respectively. This evidence supports use of longwave UV light as a nonlethal and field-applicable method to screen bats for lesions indicative of WNS. Further, UV fluorescence can be used to guide targeted, nonlethal biopsy sampling for follow-up molecular testing, fungal culture analysis, and histologic confirmation of WNS.

Key words: Bat, Chiroptera, dermatomycosis, fungal infection, Pseudogymnoascus (Geomyces) destructans, ultraviolet (UV) fluorescence, white-noise syndrome.

INTRODUCTION

White-nose syndrome (WNS) is caused by the psychrophilic fungus Pseudogymnoascus [formerly Geomyces] destructans (Pd) (Lorch et al. 2011; Minnis and Lindner 2013). Mortality from Pd infection has been confirmed for six species of North American bats, including little brown myotis (Myotis lucifugus), northern myotis (Myotis septentrionalis), Indiana myotis (Myotis sodalis), Eastern small-footed myotis (Myotis leibii), tricolored bat (Perimyotis subflavus), and big brown bat (Eptesicus fuscus) (Turner et al. 2011). Pd has also been isolated from bats in Europe (Puechmaille et al. 2011a), with documentation of characteristic invasive lesions
diagnostic for WNS (Pikula et al. 2012); unusual mortality has not been reported among European bats infected by Pd (Martínková et al. 2010; Puechmaille et al. 2011b; Sachanowicz et al. 2014).

White-nose syndrome is the first invasive cutaneous ascomycosis reported in mammals. Currently, histopathology is required to diagnose WNS (Meteyer et al. 2009). To collect an adequate sample of wing membrane (skin) to conduct a thorough histopathologic analysis, euthanasia is typically required. A rapid, field applicable, and nonlethal technique to identify presumptive WNS would reduce the need to euthanize bats to obtain a diagnosis. Such a technique would additionally serve to enhance ability to expand diagnostic activities to assess the presence of disease in new species and additional regions of the world, and to screen bats rapidly to determine efficacy of potential mitigation strategies.

Since the historic observation in 1925 that typical fungal dermatophyte infections fluoresce under long-wave ultraviolet (UV) light, this technique has been used as aid for diagnosing keratinaceous fungal infections, including ringworm in domestic animals (Koeing and Schneckenburger 1994) and tinea capitis in humans (Margaret and Deveze 1925). Applying this technique to wing membranes of bats with suspect WNS, long-wave (366–385 nm) UV light was shown to be a rapid, reliable, and field-applicable diagnostic tool for preliminary identification of WNS in batwing membranes and an accurate guide for targeted, nonlethal biopsy sampling for subsequent histologic confirmation.

MATERIALS AND METHODS

Paired assessments with the use of UV illumination and histology in the laboratory

The fluorescence of bat wings in response to long-wave UV light was compared to the histologic gold standard for diagnosing WNS. Three different UV light sources were used in these studies described below; a hand-held flashlight for quick detection of fluorescence in the laboratory, a stationary Wood’s lamp for photography in the laboratory, and a stationary 9-watt UV light for transillumination in the field. These light sources are described in detail below and all had wavelengths of 366–385 nm.

The wings of 168 bats of 11 species submitted to the US Geological Survey National Wildlife Health Center Madison, Wisconsin, USA (USGS NWHC) from 21 states between March 2009 and April 2012 were evaluated for fluorescence with the use of a hand-held 51-LED 385-nm UV flashlight (model 7202 UV-385 nm, LED Wholesalers, Hayward, California, USA) in a darkened room. Laboratory personnel wore UV-protective eyewear when illuminating bat wings and the same individual performed all visual assessments for fluorescence to ensure consistency. Photography was performed in a darkened room with the use of a Nikon (Tokyo, Japan) D80 digital SLR camera (F-stop 3.3, ISO 200, shutter speed 8 sec) with an AF 60 mm lens with no filter and a Wood’s lamp (366 nm; BLAK-RAY Model UVL-56, San Gabriel, California, USA) mounted approximately 13 cm above the bat at a 35–40 degree angle as the sole light source to illuminate the outstretched wing from above.

After external examination, the entire membrane was removed from a wing for histologic evaluation with the use of periodic acid–Schiff stain as described by Meteyer et al. (2009). All samples were coded for impartial histologic assessment for WNS and later compared with the UV-fluorescence status. Fisher’s exact test (SigmaPlot 11.0, Systat Software, Inc., San Jose, California, USA) was used to determine whether there was a relationship between fluorescence and WNS lesions.

UV fluorescence for targeted sample collection for WNS confirmation

A field study was conducted to determine if UV fluorescence could provide a preliminary diagnosis of WNS and guide nonlethal collection of wing tissue to determine WNS status by histopathology. Torpid bats were removed from roosts during surveys, captured in flight while exiting hibernacula, or found dead at hibernacula entrances. Methods and equipment used in the field for UV illumination of bat wings were the same in the US and the Czech Republic. White or UV light was used to illuminate wing membrane of bats either from above (light on the same side as the person viewing) or below (transilluminating the wing with the light source on the opposite side of viewing). A GloBox (Artograph, Delano, Minnesota, USA) was used for white light transillumination, and a field-portable 9-watt 368-nm fluorescent light (WTC 9L-110, Way Too Cool, from Fluorescents.com [www. fluorescents.com]) was used for UV transillumination. The use of white light illumination was discontinued after the effectiveness of UV fluorescence was established. During transillumination of live bats in the field, bats were kept in the dark, placed on the working surface of the light unit with wings extended. Photographs were then taken of wings with the use of a Canon (Melville, New York, USA) EOS 350D digital SLR camera (F-stop 5–10, ISO 200, and shutter speeds 0.5–30 sec) equipped with an EFS 18–55 mm or EF 100-mm lens with 58mm ultraviolet filter (in Pennsylvania); or a Nikon D300 digital SLR camera (F-stop 5.3–5.8, ISO 1000, and...
shutter speeds 0.15–0.4 sec) with AF NIKKOR 28–80-mm lens (in the Czech Republic). Cameras were mounted on a tripod (Fig. 1A). Bats were rapidly processed to reduce handling time and minimize stress. To prevent cross-contamination, field equipment was either sanitized between bats or covered with a disposable plastic sheet (Shelley et al. 2013). Dedicated “clean” equipment was used in uninfected sites to decrease risk for inadvertent introduction of a pathogen.

To characterize ability of field biologists to assess WNS-related fluorescence accurately, wings of *M. lucifugus* (n=56) from two Pennsylvania sites known to harbor bats with WNS were collected in 2010 and 2011, transilluminated with UV light, and multiple 1-cm² regions of wing membrane were outlined on each bat with permanent marker and labeled as either fluorescent (n=14) or non-fluorescent (n=13). Marked wings were then photographed during UV transillumination, and bats were euthanized by isoflurane overdose. Carcasses were shipped overnight (chilled) to the NWHC for histologic evaluation as described above.

To evaluate the effectiveness of UV transillumination-guided biopsy sampling for WNS testing, four sizes of sterile biopsy punches (McKesson, Richmond, Virginia, USA) were used. One biopsy punch of each size (3, 4, 5, and 6 mm) was used to collect areas of wing fluorescence from each of five bats providing 20 skin biopsy samples of different sizes for histopathology evaluation.

Single biopsy samples (4-mm diameter) guided by UV transillumination were collected from each of 62 live bats of six different species in the Czech Republic as they exited their hibernacula in spring 2012. Following collection, all biopsy samples were placed into individually labeled vials containing 10% neutral buffered formalin for histopathology processing.

RESULTS

The effectiveness of long-wave UV light for detection of lesions consistent with WNS was tested with the use of a combination of field and laboratory studies. Roosting bats with distinct foci of orange–yellow fluorescence could be identified when bats were illuminated from above with UV light (Fig. 1B), but this was infrequent. Wings of bats extended and illuminated from above with white light occasionally showed indistinct white fungal growth (Fig. 1C), but evidence of fungal growth or wing damage was not apparent when the wings of the bats were transilluminated with white light (Fig. 1D). However, when long-wave UV light was used to illuminate outstretched bat wings from above (Fig. 1E) or transilluminate wings from below (Fig. 1F), distinct areas of orange–yellow fluorescence were seen. Photography in the laboratory was most successful with a Wood’s lamp illuminating the wing from above (Fig. 1F). When photographing live bats under field conditions, UV transillumination (as opposed to UV illumination from above) provided the most expedient and reliable approach for detecting the orange–yellow fluorescence (Fig. 1F). When white fungal growth was seen on the wings of bats illuminated from above with white light, it corresponded to the pattern of orange–yellow fluorescence seen during UV transillumination (Fig. 1C, F). Computer magnification of digital images enhanced the ability to detect isolated pinpoint areas of fluorescence.

Paired assessments with the use of UV illumination and histology in the laboratory

Of the 168 bats submitted to the NWHC for diagnostic investigation, 80 had areas of characteristic orange–yellow fluorescence when the wings were illuminated from above with a hand-held 51-LED 385-nm UV flashlight; 79 of these were histologically positive and one histologically negative for WNS (98.8% agreement between UV and histology assessments; Table 1). The test association between UV fluorescence and WNS lesions (P<0.001) in these 168 bats was all histologically negative for WNS bats.

Of the 88 bats that were UV-fluorescence negative and histologically negative, 22 had microscopic evidence of fungal colonization in the superficial keratin layer of wing skin that was morphologically distinct from WNS, and these fungi were considered to be different from *Pd*.

South Carolina White-nose Syndrome Response Plan 2019
Page 37 of 56
FIGURE 1. Long-wave ultraviolet (UV) and white-light illumination of lesions associated with white-nose syndrome. All photographs are from bats of the US; blurring in photos of live bats in C, D, and F is due to animal movement during long exposure. (A) Camera in cave, mounted on tripod directed at platform constructed to transilluminate bat wings with UV light (photo by Craig Stihler with permission). (B) Points of orange–yellow fluorescence (arrows) detected on a roosting Indiana myotis (Myotis sodalis) following surface illumination with a field-portable 9-watt 368-nm fluorescent UV light (photo by Tina Cheng with permission). (C) Wing from live little brown myotis (Myotis lucifugus) lit from above in cave with white light shows dispersed pattern of fungal growth. (D) White-light transillumination of wing from the live bat in C shows no obvious pattern of fungal infection or wing damage. (E) Wing from dead tricolored bat (Perimyotis subflavus) lit from above with handheld 51 LED 385-nm UV flashlight shows points of orange–yellow fluorescence. (F) Transillumination of wing from live bat in C with the use of a field-portable 9-watt 368-nm fluorescent UV light. The pattern of orange–yellow fluorescence follows the distribution of surface fungal growth seen in C.
Table 1. Summary of paired ultraviolet (UV) fluorescence and histologic analyses for bats from North America and UV-targeted biopsy-based study for bats from Europe.

<table>
<thead>
<tr>
<th>Bat species</th>
<th>Positive</th>
<th>Negative</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fluorescence</td>
<td>Histology</td>
<td>Fluorescence</td>
</tr>
<tr>
<td>US (whole carcasses)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myotis lucifugus</td>
<td>59</td>
<td>58</td>
<td>40</td>
</tr>
<tr>
<td>Eptesicus fuscus</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Myotis leibii</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Myotis septentrionalis</td>
<td>5</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Perimyotis subflavus</td>
<td>11</td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td>Myotis griseescens</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Myotis velifer</td>
<td>0</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>Myotis sodalis</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Myotis yumanensis</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Myotis australiparius</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Tadarida brasiliensis</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Unidentified Myotis sp.</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>80</td>
<td>79</td>
<td>88</td>
</tr>
<tr>
<td>Czech Republic (biopsy samples)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myotis myotis</td>
<td>17</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>Myotis daubentoni</td>
<td>2</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>Myotis nattereri</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Myotis bechsteinii</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Myotis alcatheoe</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Myotis emargiatus</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>22</td>
<td>22</td>
<td>40</td>
</tr>
</tbody>
</table>
FIGURE 2. Ultraviolet fluorescence in wings of live bats (main images) and periodic acid–Schiff stained histologic sections (insets) of bat-wing skin with lesions diagnostic of white-nose syndrome; blurring in photos is due to animal movement during long exposure. (A) Black circle outlines an approximately 1-cm² area of wing from a little brown myotis (*Myotis lucifugus*), Pennsylvania, USA with foci of fluorescence (white arrow). Inset shows the histologic section of this 1-cm² area of tissue with densely packed fungal hyphae in cupping erosions (arrowheads). (B) Black circle outlines a 1-cm² area of wing from a little brown myotis, Pennsylvania, with a single fluorescent dot (white arrow). Inset shows the only fungal cupping erosion (arrowhead) found in the histologic section from this labeled area of wing membrane. (C) Black circles outline foci of fluorescence on the wing skin of a greater mouse-eared myotis (*M. myotis*) from the Czech Republic (white arrow). Inset (scale bar 5 50 mm) shows the histologic section from a 4-mm biopsy sample taken from an area of fluorescence with densely packed fungal hyphae in cupping erosion (arrowhead).
Use of UV fluorescence to target sample collection for WNS confirmation

Histologic examination of all 1-cm² targeted samples of fluorescent wing membrane collected from bats in Pennsylvania (n=14) were positive for the dense aggregates of fungal hyphae that form cupping erosions, which define WNS (Fig. 2A, B). When these 1-cm² skin samples encompassed single, pinpoint dots of fluorescence, microscopic examination identified individual fungal erosions diagnostic for WNS as small as 20–40 mm in diameter (Fig. 2B). Nine of 13 1-cm² regions of wing membrane marked as non-fluorescent had no cupping erosions when examined microscopically. The remaining 4 of 13 non-fluorescent samples examined microscopically had a single fungal cupping erosion (20–40 mm diameter) diagnostic for WNS. Retrospective computer magnification of the digital images taken in the field of these four fluorescence-negative bats subsequently detected scattered small pinpoint fluorescent areas that were not initially detected, suggesting that the reliable margin of accuracy in assessing unmagnified digital images may be lesions approximately 20–40 mm in diameter.

The utility of nonlethal UV-targeted biopsy sampling and biopsy size requirements was evaluated with the use of wing skin samples from bats in Pennsylvania. Biopsy samples of four diameters (3, 4, 5, and 6 mm) from each of the five bat carcasses provided adequate tissue for diagnosing cupping erosions characteristic of WNS, confirming the usefulness of this nonlethal sampling technique for biopsies as small as 3 mm in diameter.

Consistent with samples analyzed from North America, 21 of 22, 4-mm targeted biopsy samples from UV-fluorescent wing skin of bats from the Czech Republic also contained dense aggregates of fungal hyphae filling cupping erosions that are diagnostic for WNS (95.5% agreement between UV and histopathology assessments; Fig. 2C; Table 1). Retrospective review of digital images indicated that, for the histology-negative animal, the circled region of wing skin targeted for biopsy sampling had missed the point of fluorescence. For reporting purposes, however, this animal was classified as fluorescence-positive and histology negative. Additionally, a biopsy sample from 1 of 40 fluorescence-negative bats from the Czech Republic was positive for WNS by histology.

DISCUSSION

The gold standard for diagnosing bat WNS is the histologic identification of aggregates of fungal hyphae that form characteristic cupping erosions and ulceration of wing membrane (Meteyer et al. 2009). The large amount of wing membrane needed to detect these lesions histologically necessitates euthanasia of the bat. Given the detrimental effect that WNS has had on bat populations (Blehert et al. 2009; Frick et al. 2010; Turner et al. 2011), detection protocols that do not require euthanasia would be advantageous.

Illumination/transillumination of wing membranes of bats with WNS with the use of long-wavelength UV light (366–385 nm) elicited a distinct orange–yellow fluorescence that correlated with the presence of fungal cupping erosions used to diagnose WNS by histopathology (Figs. 1, 2). This correlation of fluorescence to WNS histologic lesions was observed in wings from five North American and four European species of bats (Table 1), with 98.8 and 95.5% agreement between UV and histopathology assessments for bats of North America and Europe, respectively. In addition, the 22 of 88 fluorescence negative bats that had fungi along the superficial keratin of wing skin were also histologically negative for the cupping erosions that confirm WNS. This supports our hypothesis that it is the lesion of cupping erosion, characteristic of WNS, that is fluorescing with UV light, and not superficial fungal hyphae. We thus conclude that observation of orange–yellow fluorescence following illumination/transillumination of wing membranes with UV light facilitates identification of bats with WNS. Pd is an ascomycete fungus, as are numerous plant pathogens. Ascomycete plant pathogens change morphologically as they penetrate the plant cuticle and the distinct subsurface hyphae release novel products related to virulence at the fungal–tissue interface (Valent and Khang 2010). A similar scenario might explain fluorescence associated with the invasive lesion of WNS and not surface hyphae. Once penetration of the epidermis occurs, Pd hyphae may secrete novel proteins, metabolic products, and enzymes that contribute to the erosion of living tissue and fluorescence.

Bats severely affected by WNS had numerous conspicuous large, coalescing regions of fluorescence distributed over much of the wing membrane and were readily identifiable (Fig. 1E, F). In North American bats with mild WNS (Fig. 2B), as in the WNS-positive bats in Europe (Fig. 2C), the random, sparse, and pinpoint pattern of fluorescence was more difficult to see, particularly when environmental white light was not eliminated. In addition, ability to discern sparse, subtle fluorescence often varied by observer, potentially because of factors
such as inexperience with the technique, red–green color blindness, or other differences in visual acuity. Because of these difficulties, UV technique may miss individual bats with mild cases of WNS. Laboratory tests including PCR for detection of Pd (Muller et al. 2013), culture for Pd (Lorch et al. 2010), and histology to diagnose WNS (Meteyer et al. 2009) continue to play a definitive role in confirming WNS. The ability to observe sparse points of fluorescence can be enhanced by using digital photography with extended exposure time and augmentation by computer magnification of the digital images. The smallest points of fluorescence that could be visually detected with the unaided eye correlated to cupping erosions .20 mm in diameter.

In addition to the demonstrated utility of long-wave UV light as a rapid field assessment technique to obtain a preliminary diagnosis for WNS, this technique can also be used to optimize nonlethal collection of small (4-mm) biopsy samples for testing by histology, PCR, or culture. Another benefit of the enhanced accuracy afforded by UV-guided sampling is the ability to identify bats with fluorescent lesions (Fig. 1B) while limiting disturbance to non-fluorescent bats within a hibernaculum. This nonlethal assessment technique can also assist natural resource managers and researchers investigating WNS by facilitating the ability to track progression of disease in individual bats and by providing the potential, in the hands of trained field personnel, to generate accurate preliminary on-site results to inform mitigation strategies more quickly. The ability to perform targeted and nonlethal sampling of bats for WNS offers a needed tool to facilitate enhanced surveillance and research for this disease.

ACKNOWLEDGMENTS

We thank numerous state and federal biologists for submitting diagnostic specimens to NWHC, NWHC technicians for assistance with necropsies, Nathan Ramsay (NWHC) for laboratory photography, Craig Stihler (WV DNR) and Tina Cheng (UCSC) for field photography, Colleen Patterson-Pritcher, Cynthia Hauser, Lee DeWolfski, and James Sinclair for assistance in the field, and Jeff Lorch (University of Wisconsin–Madison) for helpful suggestions during preparation of this manuscript. This work was supported by the US Geological Survey, the Czech Science Foundation (P506/ 12/1064), and the National Speleological Society. Use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the US government.

Permits

In Pennsylvania, work with live bats was conducted by personnel of the Pennsylvania Game Commission in compliance with Pennsylvania Statute Title 34, Section 322, and procedures for sampling and euthanasia of bats in the US were conducted in accordance with US Geological Survey National Wildlife Health Center (NWHC) Institutional Animal Care and Use Committee Experimental Protocol 081124-A2. In the Czech Republic, live bats were sampled as they left hibernacula, and work was conducted in accordance with the Czech Academy of Sciences Ethics Committee Animal Use Protocol 169/2011 in compliance with Law 312/2008 on Protection of Animals against Cruelty adopted by the Parliament of the Czech Republic. Nonlethal sampling was in compliance with Law 114/1992 on nature and landscape protection, and was based on permits 01662/MK/2012S/00775/MK / 2012, 866/JS/2012, and 00356/KK/2008/AOPK issued by the Nature Conservation Agency of the Czech Republic.

LITERATURE CITED

Martı´nkova´ N, Bacˇkor P, Bartonicˇka T, Blazˇková P, Cˇ erveny´ J, Falteisek L, Gaisler J, Hanzal V,

Submitted for publication 3 March 2014. Accepted 28 March 2014.
D. Protocol for Non-lethal Swab Sampling of Bat Skin for Detection of \textit{Pd}

These guidelines are from the USGS National Wildlife Health Center Bat White-Nose Syndrome (WNS)/Pd Surveillance Submission Guidelines Winter 2018/2019 (November-May)

APPENDIX D - Protocol for Non-lethal Swab Sampling of Bat Skin for Detection of
Pseudogymnoascus destructans (Pd)

Purpose: The following procedure is designed to detect the presence of Pd while minimizing disturbance to the sampled bat. This technique will NOT confirm White-nose Syndrome (WNS) on bats and should not be used as the sole sampling methodology in areas where WNS has not been previously confirmed in the bat population.

Materials:
Provided by NWHC:
- Sterile, individually wrapped polyester-tipped swabs with plastic shafts (27)
- Sterile, pre-labeled 1.5-ml microcentrifuge tubes, each containing 150 µl of nuclease-free water (25)
- Plastic bags for vial storage (1 quart-size) & “TRASH” (1 gallon-size)
- Datasheets on waterproof paper that can be decontaminated appropriately
- Plastic bag (1 gallon-size) for “CLEAN” outer storage & packaging of sample vials and datasheet (do not carry this bag inside hibernaculum)
- Spot Labels containing barcodes for datasheets
- Insulated shipper box with 2 ice packs (for return shipment only, do not carry inside hibernaculum)
- Pre-paid return FedEx shipping label & airbill pouch

Needed:
- Disposable exam gloves
- Ultra-violet UVA (368-385nm) light source (optional)
- Pencil or indelible ink pen
- Plastic clipboard
- Decontamination supplies
- Cooler with ice packs for sample on-site storage & transport from site

Bat Swab Collection Protocol:
1. Persons collecting swab samples from bats or handling sample tubes should wear disposable exam gloves. It is not necessary to change gloves between each bat/sample tube provided the persons performing these tasks do not directly contact individual bats or the environmental substrate.
2. Identify a bat to be sampled.
3. Record the requested individual bat information on the Individual Specimen Datasheet. Remove a pre-labeled sample tube from the “SWAB VIALS” bag. Remember to record the unique Vial # from the selected sample tube. Spot Labels with barcodes should replace written vial #s on datasheet prior to shipment to the lab.
4. Tap sample tube to ensure all liquid is pooled at the bottom.
5. Remove a swab from its packaging without touching the polyester tip.
6. Dip the tip of the swab into the sample tube to moisten (most water will be absorbed by swab).
7. Bats may be sampled without removing them from their roosting location. If direct handling of the bat is required for other work, hold bat face down with one wing pulled slightly away from the body at the elbow.
8. Sample one of the bat’s forearms and adjacent wing tissue between the elbow and wrist (see diagram) by gently ROLLING the swab across the surface of skin (three passes

![Diagram of bat wing](image)
back & forth). Rolling the swab as it is moved along the skin prevents abrading the delicate wing skin and maximizes contact with the swab surface.

9. Roll the same swab across the muzzle of the same bat 3 times.

10. After collecting the sample, transfer swab to the same sample tube used to moisten it. Break off the shaft near the applicator tip. Avoid touching the rim of the tube or inside of lid with your fingers. Screw closed the tube lid tightly.

11. Place swab sample tubes into the “SAMPLES” bag and follow instructions for sample handling and storage.

12. Dispose of swab handles, wrappers, and contaminated exam gloves as necessary into “TRASH”.

13. Repeat the above process for each bat sampled.

Sample Handling and Storage:

- Samples collected inside the hibernaculum can be maintained at ambient temperature while underground. Whenever above-ground, hold collected samples on frozen ice packs for transport to an office refrigerator or freezer.

- Prior to leaving the site, spray datasheets with a non-alcohol-based disinfectant and place inside the emptied “SWAB VIALS” bag. Decontaminate the outer surfaces of all bags carried on-site following current USFWS Decontamination Guidelines (https://www.whitenosesyndrome.org/static-page/decontamination-information).

- Place samples bag and datasheet bag inside the “CLEAN” bag (1 gallon-size) for storage and shipment-this bag should not be carried on-site. Remove all excess air from bags.

- Hold all samples chilled (4°C) if they are to be shipped within 2 days after collection. If you are sampling multiple sites, samples can be stored frozen at -20°C (preferably not a frost-free unit that undergoes periodic freeze-thaw cycles) to facilitate batch shipping at your convenience. However, **frozen samples MUST be received by the lab no later than 4 weeks after collection**. If only a frost-free freezer is available, package samples between ice packs within the freezer to protect them from temperature fluctuations. Longer-term storage at -80°C is possible. Avoid multiple freeze-thaw cycles.

Sample Shipment:

Package bagged samples between frozen ice packs for shipment by overnight courier to the USGS – National Wildlife Health Center. Ensure that ice packs are frozen solid prior to sealing the package for shipment. A prepaid FedEx priority overnight return shipment label is included with each shipper provided. Ship early in the week (Mon-Wed). DO NOT ship on Fridays or the day before a federal holiday. NWHC cannot receive weekend deliveries. Email NWHC (nwhc-epi@usgs.gov) when you are ready to return samples. Include the package tracking number and scanned copies of the completed datasheets in the email. Remember to replace written Vial #s with barcode Spot Labels onto dry, disinfected datasheets prior to scanning and shipment.

Ship samples to:

USGS – National Wildlife Health Center
Necropsy Loading Dock
Diagnostic Microbiology
6006 Schroeder Road
Madison, WI 53711
608-270-2400 (emergency contact number)
E. Instructions for Taking a Wing Tissue Biopsy

These guidelines are from the USGS National Wildlife Health Center Bat White-Nose Syndrome (WNS)/Pd Surveillance Submission Guidelines Winter 2018/2019 (November-May)

APPENDIX E - Instructions for Taking a Wing Tissue Biopsy
Modified by Pat Ornsbee (NFS) and Jan Zinck 5/14/2009 (original: Shonene Scott, Portland State University 5/2003)
Updated by Anne Ballmann (USGS-NWRC): 11/6/2018

NOTE: If punch biopsies are the only sample type to be submitted to the lab in a particular case, it is highly recommended that 2 biopsies per bat be collected (from different wings). Additional population genetic sampling should not be attempted in these individuals to reduce the number of holes in the wings. Alternatively, a skin swab can be substituted for one of the biopsy samples and should be collected first. This technique may NOT confirm White-nose Syndrome (WNS) on bats and should not be used as the sole sampling methodology in areas where WNS has not been previously confirmed in the bat population.

1. When taking biopsies it is important to reduce the potential for cross-contamination between bats. Use a small clean piece of sturdy cardboard for a flat cutting surface that can be discarded after each animal, a new biopsy punch for each bat, sterilized forceps, and disposable gloves.

2. Label each sterile vial using a black ultra-fine Sharpie permanent marker with the unique bat ID number using the format shown below. Indicate the sample type on the vial ("Tissue" or "Bat swab").

 State, Date (MMDDYY), Collector initials, sequential number ### (ex: WI061609AB001)

3. Have a fresh cardboard square, a labeled tube, a new tissue punch, and some sterilized forceps ready for each bat. Do not touch (contaminate) the end of the punch, the forceps, or the inside of the tube lid with fingers or environmental debris.

4. When collecting wing tissue biopsies, avoid sampling from bats with large wing tears or in areas over bones and major blood vessels (Figure 1). Identify up to 2 representative lesions to biopsy on the affected wings/tail of the bat. Long-wave UV light can optimize biopsy placement and allows for additional histopathological evaluation (target areas exhibit faint yellow-orange fluorescent spotting—See APPENDIX F). If possible, locate an affected area near the body wall within the lower half of the wing membrane or uropatagium. These locations have been demonstrated to have faster healing rates and are less disruptive to flight aerodynamics (Faure PA et al. 2009. J Mammalogy 90(5): 1148-56).

5. Place the bat on the cardboard on its back and extend one wing membrane. For people inexperienced in this technique, it works best when one person holds the bat and another person collects the biopsy. Position the biopsy punch perpendicular to the skin, press the punch firmly through the membrane and twist the punch slightly to ensure complete penetration. Apply direct pressure to biopsy site for several minutes if bleeding occurs.

Figure 1: “X” marks ideal sample locations for collecting tissue biopsies from bat flight membranes.
APPENDIX E - Instructions for Taking a Wing Tissue Biopsy -con't

6. Carefully lift the bat off the cardboard and look for the tissue sample. It should either be on the cardboard or inside the tip of the punch. A new 25 ga needle or the plastic shaft of a sterile swab can be used to pick up the tissue and transfer each biopsy to separate storage vials. For fungal PCR analysis, place tissue into an empty sterile vial (no storage media) if a skin swab sample is not available. For histopathological evaluation, place tissue into a storage vial containing 10% buffered neutral formalin (1 part tissue to 10 parts formalin). If formalin is unavailable, place biopsy in an empty sterile vial.

7. Release the bat only after tissue samples have been placed into the tubes, the tubes have been closed, and any bleeding has stopped. The number of biopsies is limited to 2 per bat to prevent compromised flight.

8. While in the field, sample tubes should be stored on ice. Subsequently, unfixed samples should be frozen until submitted for fungal PCR analysis. Formalin-fixed samples should be held at room temperature (not frozen).

9. Dispose of the used biopsy punch after each animal. DO NOT reuse the same biopsy punch on multiple bats. The punches are very sharp. Be careful to not cut yourself. Change into new gloves before handling each bat.

10. Ship wing tissues to NWHC. Ensure that all vials are labeled and lids are secured in place to prevent cross-contamination of samples. Wrap lid of vials in parafilm and place in a Ziploc bag. If parafilm is not available, double-bag specimens before placing in cooler. Specimens should be chilled and shipped overnight in a cooler with blue ice. If unfixed samples cannot be shipped within 2 days of collection, freeze them (-20°C) and ship no later than 1 week after collection. NOTE: There are additional packaging and labelling requirements for shipment of specimens stored in formalin. Contact NWHC for more details.

Send an electronic copy of the completed datasheets (Appendix C) to the NWHC-epi@usgs.gov. Shipping address and examples of appropriate shipping materials are in Appendix G. Contact Anne Ballmann (aballmann@usgs.gov, 608-270-2445) if you have any additional questions.

SUPPLIES: NOTE- Neither the USGS nor the NWHC endorse these vendors as the only sources of these products. This information is provided only as a guideline.

- 3-5 mm sterile biopsy punches Fisher Scientific Catalog # NC9515874 ($106.73/pack of 50)
- 25-gauge needles OR sterile plastic-shafted swabs
- Sharps collection container
- 10% buffered neutral formalin (if histopathological analysis is desired)
- 2ml sterile plastic vials with caps
- Fine point permanent marker
- Vial labels
- Disposable exam gloves
- Stiff cutting surface (cardboard square)
- Parafilm sealant
- Ziploc bags and cooler with blue ice
F. Longwave ultraviolet (UVA) fluorescence screening of bat wings

These guidelines are from the USGS National Wildlife Health Center Bat White-Nose Syndrome (WNS)/Pd Surveillance Submission Guidelines Winter 2018/2019 (November-May)

APPENDIX F – Longwave ultraviolet (UVA) fluorescence screening of bat wings

Authors: Anne Ballmann, Carol Meteyer (modified from G. Turner & J. Gums 2011), 5/7/2012
Updated by Anne Ballmann (USGS-NWHC): 11/6/2018

Purpose: To examine bat wings with little to no visible fungal growth for evidence of yellow-orange fluorescence areas suggestive of an infection by *Pseudogymnoascus destructans*. This is a screening technique with unknown specificity outside the WNS endemic area. It will NOT confirm White-nose Syndrome (WNS) on bats and should not be used as the sole sampling methodology in areas where WNS has not been previously confirmed.

Equipment:
NOTE - Neither the USGS nor the NWHC endorse these vendors as the only sources of these products. This information is provided only as a guideline.

- 380-385 nm wavelength UV 51 bulb LED flashlight and visible light filter (LED Wholesaler #7202UV385; Polman Minerals) or 368 nm wavelength 9 V UV box (Contact Greg Turner [grturner@pa.gov] for more details on UV box system)
- Disposable exam gloves
- Digital camera
- Permanent marker
- PPE: UVA blocking safety glasses, SPF15+ sunblock on exposed human skin

Additional equipment for non-lethal wing biopsy collection:

- 2 ml sterile vials with screw cap lids
- 10% buffered neutral formalin
- 3-5 mm sterile punch biopsies

Procedure: (To reduce potential cross-contamination, use clean exam gloves when handling each bat.)

1. In complete darkness, shine the UV flashlight facing down approximately 3–5 inches (7.5–12.5 cm) above the extended surface of the flight membranes (Fig. 1A). If using a UV box, place the bat on its back and extend the wing and corresponding foot over the UV light source to transilluminate the wing surface. Disinfect surface of UV box between bats. Avoid shining the light into the unprotected eyes of the bat or people or exposing bat skin to UV light for more than 3 minutes.
2. Examine wing membrane for circular areas of yellow-orange fluorescence (Fig. 1B). Fluorescence will be faint when viewed with the naked eye using a hand-held UV flashlight. Visualization is greatly enhanced by examining a digital photograph of the UV-illuminated wing surface taken with a camera tripod setup.
3. If the bat is to be euthanized, use a permanent marker to circle representative areas of fluorescence on the wing membrane to target sampling in the laboratory. Place marks outside of the fluorescent border.
4. If live-sampling techniques are used, collect paired wing punch biopsies (3-5 mm diameter, See Appendix E) that incorporate areas of UV fluorescence. Place one wing biopsy into a 2ml vial containing 1.5 ml of 10% buffered neutral formalin for histology. Place the second wing biopsy into an empty sterile vial for PCR and keep chilled in the field. Alternatively, a combined wing/muzzle swab (Appendix D) can be substituted for the 2nd wing biopsy. Label vials with the unique bat ID number.
5. Submit samples along with any digital photos of fluoresced wings to NWHC-epi@usgs.gov.

![UVA flashlight and visible light filter](image1.png)
![Digital photo of extended wing held over 368 nm UV light box](image2.png)

Figure 1. A) UV flashlight examination of ventral bat wing to be conducted in total darkness. B) Digital photo of backlit extended wing held over 368 nm UV light box. Arrows identify yellow-orange fluorescent areas of various diameters associated with suspect *P. destructans* infection.
G. NWHC Instructions for collection of carcasses

These guidelines are from the USGS National Wildlife Health Center Bat White-Nose Syndrome (WNS)/Pd Surveillance Submission Guidelines Winter 2018/2019 (November-May)

APPENDIX G

USGS – National Wildlife Health Center

INSTRUCTIONS FOR COLLECTION AND SHIPMENT OF AVIAN AND MAMMALIAN CARCASSES

Contact the NWHC Field Epidemiology Team before shipping.
Alaska, continental US, or Puerto Rico: NWHC-epi@usgs.gov, 608-270-2400
Hawaii/Pacific Islands: thierry_work@usgs.gov, 808-792-9520

The following instructions should be used for collecting and shipping wildlife carcasses, carcass parts animals to the National Wildlife Health Center (NWHC) to insure adequate and well preserved specimens.

Freezing/thawing impedes isolation of some pathogens and damages tissues. NWHC prefers unfrozen specimens if they can be sent within 24-36 hours of collection or death. We will provide guidance on freezing samples on a case-by-case basis. As a general guideline: if you cannot call or ship within 24-36 hours, freeze the animal(s).

☐ Contact NWHC to get shipping approval and discuss shipping arrangements. Typically, ship specimens by 1-day priority overnight service, Monday through Wednesday, to guarantee arrival at NWHC before the weekend. If specimens are fresh and need to be shipped on Thursday or Friday, special arrangements can be made.

☐ Email/fax history and tracking number to NWHC. Packages will not be opened if history does not arrive first!

☐ Use rubber, vinyl, or nitrile gloves when picking up sick or dead animals. If you do not have gloves, insert your hand into a plastic bag.

☐ More than one disease may be affecting the population simultaneously. When possible, collect both sick and dead animals. Note behavior of sick animals before euthanizing.

☐ Collect specimens that are representative of all species affected and geographic areas.

☐ Collect the freshest dead specimens. Decomposed or scavenged carcasses are usually of limited diagnostic value. If you plan to collect animals in the field, take along a cooler containing ice to immediately chill carcasses.

☐ Collect animals under the assumption that an infectious disease or toxin is involved and other animals may be at risk. Protect yourself as some diseases and toxins are hazardous to humans.

☐ Place each animal in a plastic bag, close, and seal the bag. Twist non-zipper bags closed, fold over on itself, and secure with package strapping or duct tape. Label the outside of this bag with the following information in waterproof ink:

- Date collected
- Location (specific site, town, county, state)
- Collector (name/address/phone)
- Species
- Found dead or euthanized
- Your agency’s internal reference #

☐ Place 1st bag inside a 2nd bag, close and seal. More than one individually bagged animal can be placed in the 2nd bag. This prevents cross-contamination of individual specimens and leaking shipping containers.

☐ Tag the outside of 2nd bag and number of animals and type, date collected, location, and name of collector. Reminder order: TAG, BAG, BAG, TAG.

☐ Use a hard-sided cooler in good condition for shipment. Close the drain plug of cooler and tape over inside. Line cooler with a thick bag (1 mil thickness, 3rd layer of bags).
Place absorbent material in the 3rd plastic bag to absorb any liquids that might leak during shipping. See appendix for examples of bags and absorbent materials.

Pack the individually bagged animal(s) that are contained within the 2nd sealed bag into the 3rd bag with enough FROZEN BLUE ICE PACKS or similar coolant to keep carcasses cold. Use enough coolant to keep samples chilled if there is a delay in delivery:

- Blue ice (unfrozen) can be obtained at hardware, sporting goods, or grocery stores.
- Wet ice can be used if frozen in a sealed plastic container (i.e., soda or water bottle).
- DO NOT USE DRY ICE.

Seal the 3rd bag with methods described for 1st bag.

Place the completed specimen history and return shipping label in a ziplock bag and tape to the inside lid of the cooler (if you want the cooler returned). NWHC CANNOT PAY FOR SHIPPING.

Using packing or duct tape, tape the cooler shut around the lid and at each end using a continuous wrap around the cooler.

Attach the shipping document (airbill) with the DOT information below to the outside of each cooler in a resealable pouch:

Address:
National Wildlife Health Center
Necropsy Loading Dock
6006 Schroeder Road
Madison, WI 53711

Emergency Contact:
NWHC FET emergency 608-270-2400

Supplementary Labels:
Keep Cold

Mark the cooler with the appropriate information: (See last page for printable marking labels)

- Carcasses of animals that died of unknown causes:
 BIOLOGICAL SUBSTANCE, CATEGORY B and UN 3373.
- Blood and tissue samples from apparently healthy animals (hunter-killed, live captured):
 EXEMPT ANIMAL SPECIMENS.
- Blood and tissue samples from dead or sick animals:
 BIOLOGICAL SUBSTANCE, CATEGORY B and UN 3373.

Note the tracking number in case packages are delayed.

These instructions cover federal shipping regulations for commercial carriers.

Appendix:

Example of bags available at large supermarkets (list not all inclusive):

Inner and second layer bags:

- Hefty Big Bag – 22 gal
- Hefty Freezer – 1 gal
- Hefty Jumbo – 2.5 gal

Third layer for cooler liners:

- Hefty Cinch Sak (1.1 mil) – 33 and 39 gal
- Hefty Lawn and Leaf (1.1 mil) – 33 and 39 gal
- House brand large trash (1.1 mil) – 30 gal

Absorbent material:

- Super absorbent packet or pads for water
- Paper towels
- Do not use packing peanuts or shredded paper.

Ziplock Freezer – 1 gallon
Ziplock Big Bag – 20 gallon
Glad Freezer – 1 qt, 2 qt, 1 gal

Glad Force Flex (1.05 mil) – 25 gal
Hefty Ultra Flex (1.3 mil) – 30 gal
House Lawn - Leaf (1.2 mil) – 39 gal

Cellulose wadding
Cotton batting or cotton balls
H. Southeastern Cooperative Wildlife Disease Study Necropsy Submission Form

https://vet.uga.edu/population_health_files/Clinical_Case_Submission_Form-1-16-2014.pdf
SOUTHEASTERN COOPERATIVE WILDLIFE DISEASE STUDY
NECROPSY SUBMISSION FORM

PERSON SUBMITTING CASE

<table>
<thead>
<tr>
<th>NAME</th>
<th>AGENCY</th>
<th>ADDRESS</th>
<th>PHONE</th>
<th>EMAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME</th>
<th>AGENCY</th>
<th>ADDRESS</th>
<th>PHONE</th>
<th>EMAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>COUNTY</th>
<th>STATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATE FOUND</th>
<th>SPECIES</th>
<th>WILD OR CAPTIVE?</th>
<th>SEX</th>
<th>AGE</th>
<th>WEIGHT</th>
<th>IS THIS ANIMAL A RABIES SUSPECT?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(CIRCLE)</td>
<td></td>
<td></td>
<td></td>
<td>□ NO □ YES</td>
</tr>
</tbody>
</table>

IF YES, DESCRIBE DOMESTIC ANIMAL AND HUMAN CONTACT AND STATUS OF RABIES TESTING:

<table>
<thead>
<tr>
<th>WAS ANIMAL FOUND DEAD</th>
<th>OR EUTHANIZED</th>
<th>PLEASE GIVE BRIEF HISTORY OF CASE (USE BACK IF NECESSARY)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NUMBER OF ANIMALS SUBMITTED</th>
<th>LIST TYPE OF SAMPLES (WHOLE BODY, SPLEEN, OBEX, ETC.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME OF SCWDS STAFF MEMBER WHO DISCUSSED THIS CASE WITH YOU:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

SHIPPING INSTRUCTIONS

1. CONTACT SCWDS PRIOR TO SHIPPING
2. COMPLETE THIS FORM ENTIRELY
3. PLACE SPECIMENS IN A HARD COOLER WITH ICE PACKS (NOT WET ICE!)
4. SHIP USING NEXT MORNING DELIVERY
5. DO NOT SHIP ON FRIDAYS OR ON DAYS PRIOR TO HOLIDAYS

SHIPPING ADDRESS

SCWDS
589 D.W. BROOKS DRIVE
WILDLIFE HEALTH BUILDING
COLLEGE OF VETERINARY MEDICINE
THE UNIVERSITY OF GEORGIA
ATHENS, GA 30602-4393
PHONE 706-542-1741 FAX 706-542-5865